EVALUATING SOUTHEAST ASIAN MILITARY CAMOUFLAGE DESIGNS USING CAMOUFLAGE SIMILARITY INDEX (CSI)

  • Yogi Tri Prasetyo School of Industrial Engineering and Engineering Management, Mapúa University. 658 Muralla St., Intramuros, Manila 1002, Philippines.
Keywords: Military camouflage, soldier survivability, camouflage similarity index, color design

Abstract

Military camouflage plays a critical survivability component of the front-line soldiers. The purpose of this study was to evaluate the existing military camouflage effectiveness across Southeast Asian countries using Camouflage Similarity Index (CSI). CSI is a color-based image algorithm based on CIELAB color space. The value ranges from 0 to 1 and the best value 0 is achieved if the selected camouflage perfectly blends with the selected background. 10 existing military camouflage designs across Southeast Asian countries were evaluated under 7 different locations (20x50 pixels) from 1 selected woodland background. Each location had different L*, a*, and b* values. Post-hoc Tukey test showed that there was no significant difference between camouflage, indicating that the existing Southeast Asian Military camouflage had equal effectiveness of concealment on the selected woodland background. This study represents the first attempt to investigate the effectiveness of Southeast Asian military camouflages. The results of this study could be very beneficial for Southeast Asian military organizations, academicians, and camouflage manufacturer in terms of finding the enhanced direction from the current design which subsequently enhances the survivability of the front-line soldiers.

References

1. Owens, J. (2011). Key elements of protection of military textiles. Functional Textiles for Improved Performance, Protection, and Health, 249-268.
2. Xue, F., Xu, S., Luo, Y-T, Jia, W. (2016). Design of digital camouflage by recursive overlapping of pattern templates. Neurocomputing, 271, 262-270.
3. Lin, C.J., Prasetyo, Y.T., Siswanto, N.D., Jiang, B.C. (2019). Optimization of color design for military camouflage in CIELAB color space. Color Research & Application, 44(3), 367-380.
4. Lin, C. J., & Prasetyo, Y. T. (2019). A metaheuristic‐based approach to optimizing color design for military camouflage using particle swarm optimization. Color Research & Application,44(5), 740-748.
5. Prasetyo, Y. T. (2019). Evaluating Existing China Military Camouflage Designs using Camouflage Similarity Index (CSI). Proceedings of the 2019 5th International Conference on Industrial and Business Engineering - ICIBE 2019, 321-325.
6. Brunyé, T.T., Eddy, M.D., Cain, M.S., Hepfinger, L.B., Rock, K. (2017). Masked priming for the comparative evaluation of camouflage conspicuity. Applied Ergonomics, 62, 259-267.
7. Brunyé, T.T., Martis, S.B., Horner, C., Kirejczyk, J.A., Rock, K. (2018). Visual salience and biological motion interact to determine camouflaged target detectability. Applied Ergonomics, 73, pp.1-6.
8. Brunyé, T.T., Martis, S.B., Kirejczyk, J.A., Rock, K. (2019). Camouflage pattern features interact with movement speed to determine human target detectability. Applied Ergonomics, 77, 50-57.
9. Ramsey, S., Mayo, T., Howells, C. A., Shabaev, A., & Lambrakos, S. G. (2018). Modeling apparent camouflage-pattern color using segment-weighted spectra. Journal of Electromagnetic Waves and Applications, 33(5), 541–556.
10. Volonakis, T.N., Matthews, O.E., Liggins, E., Baddeley, R.J., Scott-Samuel, N.E., Cuthill, I.C. (2018). Camouflage assessment: Machine and human. Computers in Industry, 99, 173-182.
11. Lin, C.J., Chang, C-C., Lee, Y-H. (2014). Developing a similarity index for static camouflaged target detection. The Imaging Science Journal, 62(6), 337-341.
12. Robertson, A. R. (1990). Historical development of CIE recommended color difference equations. Color Research & Application, 15(3), 167–170.
13. Lin, C.J., Chang, C-C, Liu, B-S (2014). Developing and evaluating a target-background similarity metric for camouflage detection. PLoS ONE 9(2): e87310.
14. Chang, C-C., Lee, Y-H., Lin, C-J. (2012). Visual assessment of camouflaged targets with different background similarities. Perceptual and Motor Skills, 114(2), 527-541.
15. Lin, C.J., Chang, C-C., Lee, Y-H. (2014). Evaluating camouflage design using eye movement data. Applied Ergonomics, 45, 714-723.
16. More, K., Borse, S.B. (2017). Camouflage texture assessment method based on WSSIM and nature. International Journal of Engineering and Techniques, 3(3), May-June 2017.
17. Patil, K.V., Pawar, K.N. (2017). Method for improving camouflage image quality using texture analysis. International Journal of Computer Applciations, 180 (8), 6-8.
18. Zhang, Y., Xue, S-q, Jiang, X-j., Mu, J-y, Yi, Y. (2013). The spatial color mixing model of digital camouflage pattern. Defense Technology, 9, 157-161.
19. Xue, F., Yong, C., Xu, S., Dong, H., Luo, Y., Jia, W. (2016). Camouflage performance analysis and evaluation framework based on features fusion. Multimedia Tools and Applications, 75, 4065-4082.
20. Yang, X., Xu, W.-D., Jia, Q., Li, L., Zhu, W.-N., Tian, J.-Y., & Xu, H. (2019). Research on extraction and reproduction of deformation camouflage spot based on generative adversarial network model. Defence Technology.
21. Le, T., Nguyen, T. V., Nie, Z., Tran, M., & Sugimoto, A. (2019). Anabranch network for camouflaged object segmentation. Computer Vision and Image Understanding,184, 45-56.
22. Elliot, A.J., Fairchild, M.D., Franklin, A. (2015). Handbook of Color Psychology. Cambridge: Cambridge University Press.
23. Nassau, K. (1998). Color for Science, Art, and Technology. Amsterdam: Elsevier.
24. Lee, H-C. (2009). Introduction to Color Imaging Science. Cambridge: Univ.Press.
25. Prasetyo, Y.T., Suzianti, A., Dewi, A.P. (2014). Consumer preference analysis on flute attributes in Indonesia using conjoint analysis. International Conference on Advanced Design Research and Education (ICADRE), 111-117.
26. Miraja, B. A., Persada, S. F., Prasetyo, Y. T., Belgiawan, P. F., & Redi, A. P. (2019). Applying Protection Motivation Theory To Understand Generation Z Students Intention To Comply With Educational Software Anti Piracy Law. International Journal of Emerging Technologies in Learning (IJET), 14(18), 39.
27. Torres, M. E. S., Prasetyo, Y. T., Robielos, R. A. C., Domingo, C. V. Y., & Morada, M. C. (2019). The Effect of Nutrition Labelling on Purchasing Decisions. Proceedings of the 2019 5th International Conference on Industrial and Business Engineering - ICIBE 2019, 82-86.
28. Martinez, J. E. F., Prasetyo, Y. T., Robielos, R. A. C., Panopio, M. M., Urlanda, A. A. C., & Topacio-Manalaysay, K. A. C. (2019). The Usability of Metropolitan Manila Development Authority (MMDA) Mobile Traffic Navigator as Perceived by Users in Quezon City and Mandaluyong City, Philippines. Proceedings of the 2019 5th International Conference on Industrial and Business Engineering - ICIBE 2019, 207-211.
29. Goudarzi, U., Mokhtari, J., & Nouri, M. (2012). Camouflage of cotton fabrics in visible and NIR region using three selected vat dyes. Color Research & Application, 39(2), 200–207. doi: 10.1002/col.21778
30. Siadat, S. A., & Mokhtari, J. (2019). Diffuse reflectance behavior of the printed cotton/nylon blend fabrics treated with zirconium and cerium dioxide and citric acid in near‐ and short‐wave IR radiation spectral ranges. Color Research & Application, 45(1), 55–64. doi: 10.1002/col.22446
31. Viková, M., & Pechová, M. (2020). Study of adaptive thermochromic camouflage for combat uniform. Textile Research Journal, 004051752091021. doi: 10.1177/0040517520910217
32. Bacon, F. W., Iannarilli, F. J., Conant, J. A., Deas, T., & Dinning, M. (2009). Quantitative camouflage paint selection for the CH-47F helicopter. Color Research & Application, 34(6), 406–416. doi: 10.1002/col.20538
33. Lin, C.J., Prasetyo, Y.T., Widyaningrum, R. (2018). Eye movement parameters for performance evaluation in projection-based stereoscopic display. Journal of Eye Movement Research, 11(6):3.
34. Lin, C. J., Prasetyo, Y. T., & Widyaningrum, R. (2019). Eye Movement Measures for Predicting Eye Gaze Accuracy and Symptoms in 2D and 3D Displays. Displays, 60, 1-8.
35. Prasetyo, Y. T., Widyaningrum, R., & Lin, C. J. (2019). Eye Gaze Accuracy in the Projection-based Stereoscopic Display as a Function of Number of Fixation, Eye Movement Time, and Parallax. 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 54-58.
Published
2020-08-01
How to Cite
Yogi Tri Prasetyo. (2020). EVALUATING SOUTHEAST ASIAN MILITARY CAMOUFLAGE DESIGNS USING CAMOUFLAGE SIMILARITY INDEX (CSI). Malaysian Journal of Public Health Medicine, 20(Special1), 152-160. https://doi.org/10.37268/mjphm/vol.20/no.Special1/art.691