DEVELOPMENT OF THE UNIVARIATE TIME SERIES MODEL FOR FORECASTING DENGUE HEMORRHAGIC FEVER CASES IN NAKHON SI THAMMARAT
Keywords:
Univariate, Box-Jenkins, SARIMA, Dengue Hemorrhagic feverAbstract
Dengue Hemorrhagic Fever (DHF) is a prominent cause of hospitalization and death in Thailand, especially in the south. Epidemiological modeling was used to estimate the trend of outbreak tendencies based on epidemic data. The goal of this work was to create a realistic model for estimating DHF occurrences using monthly data from the department of disease control, ministry of public health, Thailand from 2010 to 2019. SARIMA model with the Box-Jenkins approach was conducted to forecast dengue incidence using the previous data. Bayesian Information Criteria (BIC), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) were used to determine their accuracy. The result shows that the SARIMA(2,0,1)(1,0,0)12 model fits the Nakhon Si Thammarat pandemic data the best. Their accuracy had the smallest BIC, MAPE, and RMSE yielding 9.64, 848.743, and 214.661, respectively. The DHF ARIMA model is necessary and may be used to forecast the incidence of DHF in other locations as well as help in the development of public health initiatives to prevent and treat the condition.
References
Martinez EZ, Silva EA. Predicting the number of cases of dengue infection in Ribeirão Preto, São Paulo State, Brazil, using a SARIMA model. Cad. Saúde Pública 2011; 27(9):1809-18.
Somboonsak P. Forecasting Dengue Fever Epidemics using ARIMA Model. In: AICCC2019. Proceedings of the 2019 2nd Artificial Intelligence and Cloud Computing Conference; 2019 December 21 – 23; Kobe, Japan. New York; Association for Computing Machinery;2020. P.144-150.
World Health Organization. Dengue and severe dengue [Internet]. Geneva: WHO; 2019 [Cited 2021 July 29]. Available from: http://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
World Health Organization. Improving data for dengue [Internet]. Geneva: WHO; 2019 [Cited 2021 July 29]. Available from: http://www.who.int/activities/improving-data-for-dengue.
Rojanapithayakorn W. Dengue hemorrhagic fever in Thailand. Dengue Bulletin 1998;22:60-72.
Chumpu R, Khamsemanan N, Nattee C. The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014. PLoS One 2019;14(12).
doi: 10.1371/journal.pone.0226945.
Hinjumpa J, Charerntanyarak L. Changing epidemiology of dengue disease in 1996-2016, Bangkok, Thailand. Disease Control Journal 2017;43(4):342-355.
doi: 10.14456/dcj.2017.1.
Bureau of Vector Borne Disease. Annual Report 2018 Bureau of Vector Borne Disease [Internet]. Bangkok: Department of Disease Control, Ministry of Public Health of Thailand; 2018 [Cited 2019 December 7]. Available from: https://ddc.moph.go.th/
uploads/ckeditor/6f4922f45568161. a8cdf4a
d2299f6d23/files/Report/Annual%20Report/2561.pdf.
Narayan N. Forecast Incidence of Dengue Fever Cases in Fiji Utilizing Autoregressive Integrated Moving Average (ARIMA) Model. Int J Stat Appl 2018;8(6):297-304.
doi: 10.5923/j.statistics.20180806.02.
Phuthomdee S, Soontornpipit P, Viwatwongkasem C, et al. Dengue Forecasting Model using SARIMA Model to predict the Incidence of Dengue in Thailand. Curr Appl Sci Technol 2018; 18(2):58-65.
doi: 10.14456/cast.2018.1.
Mekparyup J, Saithanu K. A Seasonal ARIMA Model For Forecasting The Dengue Hemorrhagic Fever Patients In Rayong, Thailand. Global Journal of Pure and Applied Mathematics 2015;11(2):175-181.
Wang H, Tian CW, Wang WM, et al. Time-series analysis of tuberculosis from 2005 to 2017 in China. Epidemiol Infect 2018;146(8):935–939.
doi: 10.1017/S0950268818001115.
Cherdchoongam S, Rungreunganun V. Forecasting the Price of Natural Rubber in Thailand Using ARIMA Model. KMUTNB international journal of applied science and technology 2016;9(4):271-277.
doi: 10.14416/j.ijast.2016.11.005.
Nayak M, Narayan KA. Forecasting Dengue Fever Incidence Using ARIMA Analysis. Int J Collab Res Intern Med Public Health 2019;11(6):924-932.
Siregar FA, Makmur T, Saprin S. Forecasting dengue hemorrhagic fever cases using ARIMA model: a case study in Asahan district. IOP Conference Series: Materials Science and Engineering IOP Conf Ser Mater Sci Eng 2018;300.
doi: 10.1088/1757-899X/300/1/012032.
BERK RA. Encyclopedia of Sociology
[Internet]. 2nd ed. USA: Macmillan; 2001 [Cited 2020 April 5]. Available from: https://go.gale.com/ps/retrieve.do?tabID=T003&resultListType=RESULT_LIST&search ResultsType=SingleTab&hitCount=555&
searchType=BasicSearchForm¤t
Position=1&docId=GALE%7CCX3404400399&
docType=Topic+overview&sort=Relevance&
contentSegment=&prodId=GVRL&pageNum=1&contentSet=GALE%7CCX3404400399&
searchId=R2&userGroupName=thnstru&inPS
=true.
Pattranurakyothin T, Kumnungkit K. Forecasting Model for Para Rubber’s Export
Malaysian Journal of Public Health Medicine 2023, Vol. 23 (2): 63-72
Sales. KMITL Science and Tecnology 2012;12(2):198-202.
Ebhuoma O, Gebreslasie M, Magubane L. A Seasonal Autoregressive Integrated Moving
Average (SARIMA) forecasting model to predict monthly malaria cases in KwaZulu-Natal, South Africa. South Africa. S Afr Med J 2018;108(7):573-578.
doi: 10.7196/SAMJ.2018.v108i7.12885.
Luz PM, Mendes BV, Codeço CT, et al. Time series analysis of dengue incidence in Rio de Janeiro, Brazil. Am J Trop Med Hyg 2008;79(6):933-9.
doi: 10.4269/ajtmh.2008.79.933.
Matinez EZ, Silva EA, Fabbro AD. A SARIMA forecasting model to predict the number of cases of dengue in Campinas, State of São Paulo State, Brazil. Rev Soc Bras Med Trop 2011;44(4):436-440.
doi: 10.1590/S0037-86822011000400007.
Singmuang C, Supapakorn T. Forecasting Model for the Export Value of Rubber of Thailand. Science and Technology Nakhon Sawan Rajabhat University Journal 2020; 12(15):58-82.
Qiu H, Zhao H, Xiang H, et al. Forecasting the incidence of mumps in Chongqing based on a SARIMA model. BMC Public Health 2021;21:373.
doi: 10.1186/s12889-021-10383-x.
Hadi ZA, Dom NC, Ismail R. A Seasonal autoregressive integrated moving average model to predict incidence of dengue cases in Kuantan, Malaysia. Science, Engineering and Health Studies 2021;15:21020009.
doi: 10.14456/sehs.2021.36.
Ministry of Public Health, Department of
Disease Control. HDC-Report [Internet].
Thailand: [Cited 2020 January 5]. Available
from: https://hdcservice.moph.go.th.
Abdulsalam FI, Antunez P, Yimthiang S, et al. Influence of climate variables on dengue fever occurrence in the southern region of Thailand. PLOS Glob Public Health 2022;2(4): e0000188.26.
doi: 10.1371/journal.pgph.0000188.
Abdulsalam FI, Yimthiang S, La-Up A, et al. Association between climate variables and dengue incidence in Nakhon Si Thammarat Province, Thailand. Geospat Health 2021;6(2).
doi: 10.4081/gh.2021.1012.
Polwiang S. The time series seasonal patterns of dengue fever and associated weather
variables in Bangkok (2003-2017). BMC Infect Dis 2020;208.
doi: 10.1186/s12879-020-4902-6.
Chen h, Wang X, Zhao J, et al. Application of the ARIMA Model in Forecasting the Incidence of Tuberculosis in Anhui During COVID-19 Pandemic from 2021 to 2022. Infection and Drug Resistance 2022;15:3503-3512.
doi: 10.2147/IDR.S367528.
Surendran SN, Nagulan R, Sivabalakrishnan K, et al. Reduced dengue incidence during the COVID-19 movement restrictions in Sri Lanka from March 2020 to April 2021. BMC Public Health 2022; 388.
doi: 10.1186/s12889-022-12726-8.
JiangI L, Liu Y, SuID W, et al. Decreased dengue cases attributable to the effect of COVID-19 in Guangzhou in 2020. PloS Negl Trop Dis 2021;15(5):e0009441.
doi: 10.1371/journal.pntd.0009441.
Punyapornwithaya V, Mishra P, Sansamur C, et al. Time-Series Analysis for the Number of Foot and Mouth Disease Outbreak Episodes in Cattle Farms in Thailand Using Data from 2010-2020. Viruses 2022;14(7):1367.
doi: 10.3390/v14071367.
Tian CW, Wang H, Luo XM. Time-series
modelling and forecasting of hand, foot and
mouth disease cases in China from 2008 to
Epidemiol Infect 2019;147:e82.
doi: 10.1017/S095026881800362X.
Punyapornwithaya V, Jampachaisri K, Klaharn K, et al. Forecasting of Milk Production in Northern Thailand Using Seasonal Autoregressive Integrated Moving Average, Error Trend Seasonality, and Hybrid Models. Front Vet Sci 2021;8:775114.
doi: 10.3389/fvets.2021.775114.
Weisent J, Seaver W, Odoi A, et al. Comparison of three timeseries models for predicting campylobacteriosis risk. Epidemiol Infect 2010;138:898–906.
doi: 10.1017/S0950268810000154.
Riansut W. ELECTION OF FORECASTING
MODELS FOR THE MANGO PRICES.
Srinakharinwirot Research and
Development (Journal of Humanities and
Social Sciences) 2019;12(23):52-63.
Wang Y, Xu C, Zhang S, et al. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model. BMJ Open 2019;9:e024409.
doi: 10.1136/bmjopen-2018-024409.
Malaysian Journal of Public Health Medicine 2023, Vol. 23 (2): 63-72
Abolmaali S, Shirzaei S. A comparative study of SIR Model, Linear Regression, Logistic Function and ARIMA Model for forecasting COVID-19 cases. AIMS Public Health 2012;8(4):598–613.
doi: 10.3934/publichealth.2021048.
Wongkoon S, Jaroensutasinee M, Jaroensutasinee K. Weather factors influencing the occurrence of dengue fever in Nakhon Si Thammarat, Thailand. Trop Biomed 2013;30(4):631–641. PMID: 24522133.